Corvin (ljusifer) wrote,
Corvin
ljusifer

Физика. еще продолжение...


Смена парадигм

Конец девятнадцатого, начало двадцатого века был временем, когда под давлением новых экспериментальных данных физикам пришлось пересмотреть старые теории и заменить их новыми, заглядывая все глубже в строение материи. Эксперимент Майкельсона — Морли выбил основу из-под ног электромагнетизма, поставив под сомнение существование эфира. Были открыты новые явления, такие как рентгеновские лучи и радиоактивность. Не успели физики доказать существование атома, как появились доказательства существования электрона, эксперименты с фотоэффекта и измерения спектра теплового излучения давали результаты, которые невозможно было объяснить, исходя из принципов классической физики. В прессе этот период назывался кризисом физики, но одновременно он стал периодом триумфа физики, сумевшей выработать новые революционные теории, которые не только объяснили непонятные явления, но и многие другие, открыв путь к новому пониманию природы.

В 1905 году Альберт Эйнштейн построил специальную теорию относительности, которая продемонстрировала, что понятие эфира не требуется при объяснении электромагнитных явлений. При этом пришлось изменить классическую механику Ньютона, дав ей новую формулировку, справедливую при больших скоростях. Коренным образом изменились также представления о природе пространства и времени. Эйнштейн развил свою теорию в общую теорию относительности, опубликованную в 1916 году. Новая теория включала в себя описание гравитационных явлений и открыла путь к становлению космологии — науки об эволюции Вселенной.

Рассматривая задачу о тепловом излучении абсолютно черного тела Макс Планк в 1900 году предложил невероятную идею, что электромагнитные волны излучаются порциями, энергия которых пропорциональна частоте. Эти порции получили название квантов, а сама идея начала построение новой физической теории — квантовой механики, которая еще больше изменила классическую ньютоновскую механику, на этот раз при очень малых размерах физической системы. В том же 1905-м году Альберт Эйнштейн применил идею Планка для успешного объяснения экспериментов с фотоэффектом, предположив, что электромагнитные волны не только излучаются, но и поглощаются квантами. Корпускулярная теория света, которая, казалось, потерпела сокрушительное поражение в борьбе с волновой теорией, вновь получила поддержку.

Спор между корпускулярной и волновой теорией нашел свое решение в корпускулярно-волновом дуализме, гипотезе, сформулированной Луи де Бройлем. По этой гипотезе не только квант света, а любая другая частица проявляет одновременно свойства, присущие как корпускул, так и волны. Гипотеза Луи де Бройля подтвердилась в экспериментах с дифракции электронов.

В 1911 году Эрнест Резерфорд предложил планетарную теорию атома, а в 1913 году Нильс Бор построил модель атома, в которой постулировал квантовый характер движения электронов. Благодаря работам Вернера Гайзенберга, Эрвина Шредингера, Вольфганга Паули, Поля Дирака и многих других квантовая механика нашла свое точную математическую формулировку, подтвердждённую многочисленными экспериментами. В 1927 году была произведена копенгагенская интерпретация, которая открывала путь для понимания законов квантового движения на качественном уровне.

[править]Физика современности

С открытием радиоактивности Анри Беккерелем началось развитие ядерной физики, которая привела к появлению новых источников энергии: атомной энергии и энергии ядерного синтеза. Открытые при исследованиях ядерных реакции новые частицы: нейтронпротоннейтрино, дали начало физике элементарных частиц. Эти новые открытия на субатомном уровне оказались очень важными для физики на уровне Вселенной и позволили сформулировать теорию её эволюции — теорию Большого взрыва.

Сложилось окончательное разделение труда между физиками-теоретиками и физиками-экспериментаторами. Энрико Ферми был, пожалуй, последним выдающимся физиком, успешным как в теории, так и в экспериментальной работе.

Передний край физики переместился в область исследования фундаментальных законов, ставя перед собой цель создать теорию, которая объясняла бы Вселенную, объединив теории фундаментальных взаимодействий. На этом пути физика получила частичные успехи в виде теории электрослабого взаимодействия и теории кварков, обобщённой в так называемой стандартной модели. Однако, квантовая теория гравитации до сих пор не построена. Определенные надежды связываются с теорией струн.

Начиная с создания квантовой механики, быстрыми темпами развивается физика твердого тела, открытия которой привели к возникновению и развитию электроники, а с ней и информатики, которые внесли коренные изменения в культуру человеческого общества.

[править]Теоретическая и экспериментальная физика

В основе своей физика — экспериментальная наука: все её законы и теории основываются и опираются на опытные данные. Однако зачастую именно новые теории являются причиной проведения экспериментов и, как результат, лежат в основе новых открытий. Поэтому принято различать экспериментальную и теоретическую физику.

Экспериментальная физика исследует явления природы в заранее подготовленных условиях. В её задачи входит обнаружение ранее неизвестных явлений, подтверждение или опровержение физических теорий. Многие достижения в физике были сделаны благодаря экспериментальному обнаружению явлений, не описываемых существующими теориями. Например, экспериментальное изучение фотоэффекта послужило одной из посылок к созданию квантовой механики (хотя рождением квантовой механики считается появление гипотезы Планка, выдвинутой им для разрешения ультрафиолетовой катастрофы — парадокса классической теоретической физики излучения).

В задачи теоретической физики входит формулирование общих законов природы и объяснение на основе этих законов различных явлений, а также предсказание до сих пор неизвестных явлений. Верность любой физической теории проверяется экспериментально: если результаты эксперимента совпадают с предсказаниями теории, она считается адекватной (достаточно точно описывающей данное явление).

При изучении любого явления экспериментальные и теоретические аспекты одинаково важны.

[править]Прикладная физика

От своего зарождения физика всегда имела большое прикладное значение и развивалась вместе с машинами и механизмами, которые человечество использовало для своих нужд. Физика широко используется в инженерных науках, немало физиков были одновременно изобретателями и, наоборот. Механика, как часть физики, тесно связана с теоретической механикой и сопротивлением материалов, как инженерными науками. Термодинамика связана с теплотехникой и конструированием тепловых двигателей. Электричество связано с электротехникой и электроникой, для становления и развития которой очень важны исследования в области физики твердого тела. Достижения ядерной физики обусловили появление ядерной энергетики, и тому подобное.

Физика также имеет широкие междисциплинарные связи. На границе физики, химии и инженерных наук возникла и быстро развивается такая отрасль науки как материаловедение. Методы и инструменты используются химией, что привело к становлению двух направлений исследований: физической химии и химической физики. Все мощнее становится биофизика — область исследований на границе между биологией и физикой, в которой биологические процессы изучаются исходя из атомарного структуры органических веществ. Геофизика изучает физическую природу геологических явлений. Медицина использует методы, такие как рентгеновские и ультразвуковые исследования, ядерный магнитный резонанс — для диагностики, лазеры — для лечения болезней глаз, ядерное облучение — в онкологии, и тому подобное.

[править]Основные теории

Хотя физика имеет дело с разнообразными системами, некоторые физические теории применимы в больших областях физики. Такие теории считаются в целом верными при дополнительных ограничениях. Например, классическая механика верна, если размеры исследуемых объектов намного больше размеров атомов, скорости существенно меньше скорости света, и гравитационные силы малы. Эти теории всё ещё активно исследуются; например, такой аспект классической механики, как теория хаоса был открыт только в XX веке. Они составляют основу для всех физических исследований.

ТеорияОсновные разделыПонятия
Классическая механикаЗаконы Ньютона — Лагранжева механика —Гамильтонова механика — Теория хаоса —Гидродинамика — Механика сплошных средВещество — Пространство — Время — Энергия — Движение — Масса — Длина —Скорость — Сила — Мощность — Работа — Закон сохранения — Момент инерции — Угловой момент — Момент силы — Волна — Действие — Размерность
ЭлектромагнетизмЭлектростатика — Электричество —Магнитостатика — Магнетизм — Уравнения Максвелла — ЭлектродинамикаЭлектрический заряд — Напряжение — Ток — Электрическое поле — Магнитное поле —Электромагнитное поле — Электромагнитное излучение
Термодинамика иСтатистическая физикаТепловая машина — Молекулярно-кинетическая теорияТемпература — Постоянная Больцмана — Энтропия — Свободная энергия —Термодинамическое равновесие — Статистическая сумма — Микроканоническое распределение — Большое каноническое распределение
Квантовая механикаУравнение Шрёдингера — Интеграл Фейнмана —Квантовая теория поляГамильтониан — Тождественные частицы — Постоянная Планка — Измерение — Квантовый осциллятор — Волновая функция — Нулевая энергия — Перенормировка
Теория относительностиСпециальная теория относительности — Общая теория относительностиПринцип относительности — 4-вектор — Пространство-время — Скорость света — Тензор энергии-импульса — Кривизна пространства-времени — Чёрная дыра

Tags: история
Subscribe

  • Post a new comment

    Error

    Anonymous comments are disabled in this journal

    default userpic

    Your IP address will be recorded 

  • 0 comments